

RAYAT SHIKSHAN SANSTHA'S ARTS, SCIENCE AND COMMERCE COLLEGE, MOKHADA, DIST. PALGHAR DEPARTMENT OF PHYSICS

BRIEF INFORMATION

The department of Physics was established on June 2013 in this college to provide knowledge of Physics. The department served tribal society by producing at least 10 Physics graduates per year. Many of our students are progressed to higher education. The department is serving to the tribal students for the betterment of society. The department is well acquainted with the traditional and advanced instruments including CRO, Power Supply, Computers, etc.

VISION, MISSION AND OBJECTIVES

Vision

 "To support & empower youth from socially deprived Tribal Region through modern higher education facility & bridge socio-economical gap between Tribal and mainstream society".

Mission

- o To provide quality Physics education to the tribal students
- o To inculcate soft skills regarding applied branches of Physics among tribal students
- o To motivate students for research

Objectives

- o To provide detailed information on Modern Physics.
- o To provide basic and applied knowledge of various branches of Physics.
- To develop competent man power with deep awareness in human values and ethics
 creating globally acceptable high quality skilled, potential, professional individuals for Industries, Academics and Society
- To inculcate scientific culture and research attitude among the Tribal students.

OFFERED PROGRAM

o B.Sc. Physics

STUDENT ENROLLED (2022-2023)

FY BSC: 52SY BSC: 09TY BSC: 09

OUR STAFF

Sr. No.	Name of the Teacher	Designation	Qualification	Experience
1.	Mr. S. K. Vitnor	Associate Professor	M.Sc.	33
2.	Mr. S. A. Funde	Asst. Professor and	M.Sc. SET	3
		Head		

PROGRAM SPECIFIC OUTCOME

At the completion of B.Sc. (Physics) the learner will be graduated with following outcomes:

- Students are expected to acquire a core knowledge in physics, including the major premises of classical mechanics, quantum mechanics, electromagnetic theory, electronics, optics, special theory of relativity and modern physics
- Students are also expected to develop written and oral communication skills in communicating physics-related topics.
- Students will develop the proficiency in the acquisition of data using a variety of laboratory instruments and in the analysis and interpretation of such data.
- Students will learn the applications of numerical techniques for modeling physical systems for which analytical methods are inappropriate or of limited utility.
- Apply conceptual understanding of the physics to general real-world situations.
- Discover of physics concepts in other disciplines such as mathematics, computer science, engineering, and chemistry.
- Develop the following experimental tools: Numerically model simple physical systems using Euler's method, curve fitting, and error analysis.
- Learn to minimize contributing variables and recognize the limitations of Equipment.

The learner will be well acquainted with the knowledge which will help them to become entrepreneur and/or to serve the nation for the betterment of society

COURSE OUTCOMES

Semester	Course	Outcomes
I	USPH101 Classical Physics	After successful completion of this course students will be able to: 1. Understand Newton's laws and apply them in calculations of the motion of simple systems. 2. Use the free body diagrams to analyze the forces on the object. 3. Understand the concepts of friction and the concepts of elasticity, fluid mechanics and be able to perform calculations using them. 4. Understand the concepts of lens system and interference. 5. Apply the laws of thermodynamics to formulate the relations necessary to analyze a thermodynamic process. 6. Demonstrate quantitative problem solving skills in all the topics covered.
I	USPH102 Modern Physics	1. Understand nuclear properties and nuclear behavior. 2. Understand the type isotopes and their applications. 3. Demonstrate and understand the quantum mechanical concepts. 4. Demonstrate quantitative problem solving skills in all the topics covered.
I	USPHP1 Practical I	 i) To demonstrate their practical skills. ii) To understand and practice the skills while doing physics practical. iii) To understand the use of apparatus and their use without fear. iv) To correlate their physics theory concepts through practical. v) Understand the concepts of errors and their estimation.
II	USPH201 Mathematical Physics	 Understand the basic mathematical concepts and applications of them in physical situations. Demonstrate quantitative problem solving skills in all the topics covered.
II	USPH202 Electricity and Electronics	1. After the completion of the course learners will get knowledge about Quantum Physics, Geophysics, and Electrodynamics. 2. This course will also develop the skills among the learners to handle D.C. circuits and

		D' '- 10' '-
		Digital Circuits 3. Learners will be able to do the circuit analysis using various network theorems. 4. Learners will understand the concept of Electrostatic field in detail. 5. Learners will understand the concept of Magnetic fields in detail.
II	USPHP2 Practical	 To understand and practice the skills while doing physics practical. To understand the use of apparatus and their use without fear. To correlate their physics theory concepts through practical. Understand the concepts of errors and their estimation.
III	USPH301: Classical Mechanics & Thermodynamics	On successful completion of this course students will be able to: 1. Understand the basic mathematical concepts and applications of them in physical situations 2. Understand the concepts of mechanics, acoustics and the Properties of matter and be able to perform calculations using them. 3. Demonstrate quantitative problem solving skills in all the topics Covered. 4. Learners will understand the Simple Harmonic Motion and the effect of Damping forces on such motions and equation of motion related to particles performing Damped Simple Harmonic Motion. 5. Learners will understand the Forced Damped Simple Harmonic Motion and Resonance. 6. Learners will understand various Laws of Thermodynamics and their implications in daily life. 7. Learners will understand various Thermodynamic Processes and various Thermodynamic Cycles (P-V graph). 8. Learners will understand the Construction & Working of different types of Heat Engines and the Thermodynamical Processes inside the heat engines.
III	USPH-302: Vector Calculus, Analog Electronics	On successful completion of this course students will be able to: 1. Understand the basic mathematical physics concepts and applications of them in physical

		situations 2. Understand the basic laws of electrostatics and magneto statics and applications of them and be able to perform calculations using them. 3. Demonstrate quantitative problem solving skills in all the topics covered. 4. Understand learners the basic concepts of Mathematical physics and their applications in physical situations 5. Understand different types of oscillator and find its frequency. 6. Apply Fundamental Theorem of Line Integrals, Green's Theorem, Stokes' Theorem, or Divergence Theorem to evaluate integrals 7. Design basic amplifier circuits using Op-amp
III	USPH303: Acoustics, Laser, Fibre optics, Crystal Physics, Material Physics, Geophysics	On successful completion of this course students will be able to: 1. After the completion of the course learners will understand the Factors affecting Acoustics and use of fibre in optical communication 2. learners will also understand the different types of crystal structures 3. Learners will understand propagation of light through Optical Fiber, Different types of fibre and Application of Optical Fiber. 4. Learners will understand working of Laser and also application of Laser in Holography. 5. Learners will understand the Electrical and Magnetic properties of the materials 6. Learners will understand the concepts of Continental drift, Plate tectonics and cause of Earthquake
III	USPHP3P: Practical course	On successful completion of this course students will be able to: 1. To demonstrate their practical skills more effectively. 2. To understand and practice the skills while doing physics practical. 3. To understand the use of apparatus and their use without fear. 4. To correlate their physics theory concepts through practical. 5. Understand the concepts of errors and their estimation.
IV	USPH401: Optics	On successful completion of this course

		students will be able to: 1. Understand the diffraction and polarization processes and applications of them in physical situations. 2. Understand the applications of interference in design and working of interferometers. 3. Understand the resolving power of different optical instruments. 4. Demonstrate quantitative problem solving skills in all the topics covered.
IV	USPH402: Quantum Mechanics	1. Able to understand the postulate of Quantum Mechanics 2. Use of Quantum Mechanics, its relevance in explaining significant Phenomena in Physics 3. Solve the time-independent Schrodinger equation as an intermediate step to solve the time-dependent Schrodinger equation. 4. Apply boundary conditions to constraint the set of possible states. 5. Find the transmission and reflection coefficients for one-dimensional Barriers
IV	USPH 403: Digital Electronics, Radio Communication	1. Learners will understand the different types of Number systems like Binary, Octal, Hexadecimal 2. After the completion of the course learners will develop the skill of programming using microprocessor 8085 3. Learners will also understand the various modulation techniques used in the communication system 4. Learners will understand different types of Flip-Flops 5. Learners will understand the working of shift registers and counters 6. Learners will understand different types of Addressing modes used in microprocessor 8085
IV	USPHP4P: Practical course	1. Learners will get the demonstration of Waveform generator using Op-amp 2. Learners will develop the skill of Error analysis of Physics experiments 3. Learners will be able to determine the Resolving power of telescope, Resolving power of grating

		4. Learners will understand the working of MS-JK flip flop (IC 7476), Latch (IC 7400/IC 7402) 5. Learners will be able to do Programming using 8085 microprocessor 6. Learners will understand the working of Op-amp as a Differentiator and Integrator 7. Learners will understand the working of 8:3 Priority Encoder (IC74LS148) and 3:8 Decoder (IC 74LS138) 8. Learners will be able to determine the wavelength of the monochromatic light using Cylindrical obstacle and Fresnel's biprism 9. Learners will understand the working of Half adder and full adder using EX-OR gate
V	USPH501: Mathematical, Thermal and Statistical Physics	1. From this course, the students are expected to learn some mathematical techniques required to understand the physical phenomena at the undergraduate level and get exposure to important ideas of statistical mechanics. 2. The students are expected to be able to solve simple problems in probability. 3. Understand the concept of independent events and work with standard continuous distributions. 4. The students will have idea of the functions of complex variables; solve nonhomogeneous differential equations and partial differential equations using simple methods. 5. The units on statistical mechanics would introduce the students to the concept of microstates, Boltzmann distribution and statistical origins of entropy. It is also expected that the student will understand the difference between different statistics, classical as well as quantum.
V	USPH502: Solid State Physics	On successful completion of this course students will be able to: 1. Understand the basics of crystallography, Electrical properties of metals, Band Theory of solids, demarcation among the types of materials, Semiconductor Physics and Superconductivity. 2. Understand the basic concepts of Fermi probability distribution function, Density of states, conduction in semiconductors and BCS theory of superconductivity.

		2 Domonstrate quantitative making solving
		3. Demonstrate quantitative problem solving skills in all the topics covered.
		1
		Upon successful completion of this course, the student will understand
		1. The application of quantum mechanics in
		atomic physics
	USPH503: Atomic	2. The importance of electron spin, symmetric
\mathbf{V}	and Molecular	and antisymmetric wave functions and vector
	Physics	atom model
	I Hy SICS	3. Effect of magnetic field on atoms and its
		application
		4. Learn Molecular physics and its applications.
		5. This course will be useful to get an insight
		into spectroscopy.
		On successful completion of this course students
		will be able to:
		1) Understand the laws of electrodynamics and
T 7	USPH504:	be able to perform calculations using them.
\mathbf{V}	Electrodynamics	2) Understand Maxwell's electrodynamics and
	Liceti ody namies	its relation to relativity
		3) Understand how optical laws can be derived
		from electromagnetic principles.
		4) Develop quantitative problem solving skills.
		1. Understanding relevant concepts.
		2. Planning of the experiments
		3. Layout and adjustments of the equipments
	PRACTICALS	4. Understanding designing of the experiments
X 7		5. Attempts to make the experiments open ended
V	USPHP05 &	6. Recording of observations and plotting of
	USPHP06	
		graphs 7. Calculation of results and estimation of
		possible errors in the
		observation of results
		Learner shall comprehend the impact of the
		interrelationship between various components of
		environment.
	Aannlied	• Learner will apply the knowledge of
	Aapplied	pollutants to undertake research projects/studies.
V	Component:	1.1Components of environment; biotic and
	Environmental	abiotic. Composition of various segments of
	Science and	environment–atmosphere, hydrosphere,
	Pollution	lithosphere, biosphere (with respect to
		composition and interrelationship).
		1.2 Types of pollution
		1.2.1 Water pollution: Pesticides and heavy
		1.2.1 " ator portation. I editerate and nearly

Code USACEVS5P1	instruments. Study of product derived by application of green chemistry (Laundry detergents, Polylactic acid packaging, Green paints, Pharmaceutical drugs-Ibuprofen) 1. This course will introduce the students to different aspects of classical mechanics. 2. They would understand the kinds of motions that can occur under a central potential and their
Practicals Course	day pollutants. 1.2.3 Others- Noise and nuclear pollution. 2.1 Solar energy, wind energy, tidal energy, nuclear energy. 2.2Biomass & bio-fuels, petro crops. 2.3Use of wastes: Water-based biomass, energy from waste & solid waste. Learner and facilitator both will develop conceptual clarity on pollution control and green environmental auditing, besides gaining knowledge about these programmes in the Indian scenario. Learner will develop an acumen to tap the potential for entrepreneurship with respect to environment related products and indoor plants. Learner will comprehend and develop better acumen so as to, take wise and necessary decisions while participating in environment related projects or framing policies/assessing environmental damages/carrying out entrepreneurial activities beneficial to environment. Estimation of Pollution: BOD &COD. Measurement of intensity of light by Lux meter Study of types of pollution: water, air, land. Study of applications of various Spectroscopy (any 4), Chromatography and Electrophoresis

		1
		examples using this formalism. 6. The introduction to simple concepts from
		fluid mechanics and understanding of the
		dynamics of rigid bodies is also expected.
		7. Finally, they should appreciate the drastic
		effect of adding nonlinear corrections to usual
		problems of mechanics and nonlinear mechanics
		can help understand the irregularity we observe
		around us in nature.
		On successful completion of this course students
		will be able to:
		1. Understand the basics of semiconductor
		devices and their applications.
		2. Understand the basic concepts of operational
		amplifier: its prototype and applications as
	USPH602:	instrumentation amplifier, active filters,
VI	Electronics	comparators and waveform generation.
		3. Understand the basic concepts of timing pulse
		generation and regulated power supplies
		4. Understand the basic electronic circuits for
		universal logic building blocks and basic
		concepts of digital communication.
		5. Develop quantitative problem solving skills
		in all the topics covered.
		1. Upon successful completion of this course,
		the student will be able to understand the
		fundamental principles and concepts governing
		classical nuclear and particle physics and have a
		knowledge of their applications interactions of
	USPH603: Nuclear	ionizing radiation with matter the key
VI	Physics	techniques for particle accelerators the physical
VI	1 Hysics	processes involved in nuclear power generation.
		2. Knowledge on elementary particles will help
		students to understand the fundamental
		constituents of matter and lay foundation for the
		understanding of unsolved questions about dark
		matter, antimatter and other research oriented
		topics. This course introduces students to the essence of
	USPH604: Special	special relativity which revolutionized the
	Theory of	concept of physics in the last century by
VI	•	unifying space and time, mass and energy, electricity and magnetism. This course also
	Relativity	gives a very brief introduction of general
		relativity. After the completion of the course the
		student should be able to
	1	stadent should be able to

		1. Understand the significance of Michelson
		Morley experiment and failure of the existing
		theories to explain the null result
		2. Understand the importance of postulates of
		special relativity, Lorentz transformation
		equations and how it changed the way we look
		at space and time, Absolutism and relativity,
		Common sense versus Einstein concept of
		Space and time.
		3. Understand the transformation equations for:
		Space and time, velocity, frequency, mass,
		momentum, force, Energy, Charge and current
		density, electric and magnetic fields.
		4. Solve problems based on length contraction,
		time dilation, velocity addition, Doppler effect,
		mass energy relation and resolve paradoxes in
		relativity like twin paradox etc.
		Learner will gain knowledge about
		environmental testing and monitoring
		laboratories, air, water quality.
		• Learner will be exposed to the know-how
		regarding establishing environmental testing and
		monitoring laboratories. earner will study and
		comprehend the treatment practices applied for
		domestic waste water and industrial effluents.
		Learner will be equipped with the knowledge
		of some alternatives to conventional resources.
		Learner will gain an insight into the basics of
	USACEVS601	costing, book keeping and accountancy.
	Aapplied	• Learner will be equipped to apply the concepts
	Component:	in his entrepreneurial ventures. Learner will
VI	_	develop aptitude to examine and assess the
	Environmental	outcome of the framework of current
	Science and	biodiversity hotspots and biosphere reserves.
	Pollution	• Learner will be able to list the different
		aspects of wildlife photography and inspect the
		positive and negative aspects of it, also be able
		to recommend how wildlife photography can
		support biodiversity conservation.
		• Learner will be able to assess the future
		challenges that ecotourism can generate for
		biodiversity conservation. Learner will ponder
		upon and find out the what, why, where, whom
		and which of climate change and global
		warming.
	USACEVS6P1	
VI		Study of physical properties of soil:

Practical	Temperature, moisture, & texture of soil.
	Population analysis by Quadrant method & Line
	transect method. Study of air &noise pollution
	monitoring device, geospatial instrument.
	Problems on accounting/costing
	Study of biodegradable plastic products, bio
	pesticides brands.
	Learner will be able to identify and evaluate the
	effects of the different sources of greenhouse
	substances.

SHORT TERM COURSES OF THE DEPARTMENT (2021-2022)

1. Certificate Course in Electrical Appliances Maintenance & Repair

EXTENSION ACTIVITIES (2021-2022)

1. Guest lecture on "Career after 12th Science" at RCSM Aashramshala, Adoshi, Tal. Mokhada, Dist. Palghar

BEST PRACTICE (2021-2022)

o Certificate Course Electrical Appliances Maintenance & Repair

INNOVATIVE PROJECT

o Solar DC Water Pumping System

FUTURE PLAN

- o To start Masters' degree program
- o To Organize International Conference
- o To Start more Career Oriented Course of physics