

RAYAT SHIKSHAN SANSTHA'S ARTS, SCIENCE AND COMMERCE COLLEGE, MOKHADA, DIST. PALGHAR

DEPARTMENT OF MATHEMATICS

BRIEF INFORMATION

The department of Mathematics was established on June 2013 in this college to provide knowledge of animals and applied aspects of Mathematics. The department served tribal society by producing at least 10 Mathematics graduates per year. Many of our students are progressed to higher education, many of the students have entered the field of computer science, thanks to the varied approach of Syllabus. The department is serving to the tribal students for the betterment of society. The department is well acquainted with the traditional and advanced instruments including like Computer, Printer, etc.

VISION, MISSION AND OBJECTIVES

- Vision
 - To inculcate values of Mathematics among the tribal students so that students can learn and become competent users of Mathematics and its application in various disciplines.
- Mission
 - To provide quality mathematical education to the tribal students
 - To provide platform to acquire abilities to evaluate problems using analytical /numerical/ graphical techniques
 - \circ $\,$ To provide a back ground for relating mathematical techniques.
- Objectives
 - To create the interest in mathematics among the students.
 - To provide basic and applied knowledge of various branches of Mathematics.
 - To develop abstract, logical & critical thinking and inculcate the research culture among the students.
 - Appreciate the usefulness power and beauty of Mathematics.

• Become Confident in using mathematics to analysis and solve problems both in academic and in real life situations

OUR STAFF

Sr. No.	Name of the Teacher	Designation	Qualification	Experience
1.	Mr. P. K. Patil	Assistant Professor	M.Sc., SET, B.Ed.	07 years
2.	Mr. J. D. Gangode	Assistant Professor	M.Sc., SET	03 months
3.	Mr. A. V. Mulani	Assistant Professor	M.Sc.	05 years

PROGRAM SPECIFIC OUTCOME

At the completion of B.Sc. (Mathematics) the learner will be graduated with following outcomes:

- Ability to acquire in-depth knowledge of Algebra, Calculus, Geometry, Differential equations and several other branches of Mathematics. This also leads to study of related areas like Computer science, Physical science, Chemical science and Life science. Thus, this Program helps learners in building a solid foundation for higher studies in Mathematics.
- Utilize mathematics to solve theoretical and applied problems by critical understanding, analysis and synthesis.
- Ability to communicate mathematics effectively by written, computational and graphic means.
- Create mathematical ideas from basic axioms.
- Ability to apply multivariable calculus tools in Physics, Economics, Optimization and understanding the architecture of curves and surfaces in plane and space etc.

The learner will be well acquainted with the knowledge which will help them to become entrepreneur and/or to serve the nation for the betterment of society

COURSE OUTCOMES

Sr. No.	Unit	Outcome
F.Y.E	S.Sc. Sem. I & II, Paper 1	
Calculus-I & Calculus-II		
1.	All units	This course gives introduction to basic concepts of Analysis with rigor and prepares students to study further courses in Analysis. Formal proofs are given lot of emphasis in this course which also enhances understanding of the subject of Mathematics as a whole. The portion on first order, first degree

		differentials prepares learner to get solutions of so many kinds					
		of problems in all subjects of Science and also prepares learner					
		for further studies of differential equations and related fields.					
F.Y.B.Sc. Sem. I & II, Paper 2							
Algeb	ora-I (Sem. I) & Discrete M	fathematics (Sem. II)					
		This course gives expositions to number systems (Natural					
2.		Numbers & Integers), like divisibility and prime numbers and					
	All units	their properties. These topics later find use in advanced					
		subjects like cryptography and its uses in cyber security and					
		such related fields.					
S.Y.E	B.Sc. Sem. III & IV, Paper	1					
Calcu	llus (Sem. III) & Multivari	able Calculus I(Sem. IV)					
		This course gives introduction to basic concepts of Analysis					
		with rigor and prepares students to study further courses in					
3.	All units	Analysis. Formal proofs are given lot of emphasis in this course					
		which also enhances understanding of the subject of					
		Mathematics as a whole					
S.Y.E	B.Sc. Sem. III & IV, Paper	2					
Linea	r Algebra I (Sem III) & I	inear Algebra II (Sem IV)					
		This course gives expositions to system of linear equations and					
		matrices, Vector spaces, Basis and dimension, Linear					
4.	All units	Transformation. Inner product space, Eigen values and					
		eigenvectors.					
SVE	Sc Sem III Paper 3						
5.1.1							
Ordi	nary Differential Equations						
	All units	Ordinary Differential Equations prepares learner to get					
5.		solutions of so many kinds of problems in all subjects of					
		Science and also prepares learner for further studies of					
		differential equations and related fields.					
S.Y.E	B.Sc. Sem. IV, Paper 3						
Num	erical Methods						
1.000		Lerner will learn different types of Numerical methods to apply					
		in different fields of Mathematics.					
TVI	P So Som V Donon 1						
1.1.1	5.5c. sem. v, raper 1						
Multivariable Calculus II							
		In this course students will learn the basic ideas, tools and					
		techniques of integral calculus and use them to solve problems					
6.	All units	from real-life applications including science and engineering					
		problems involving areas, volumes, centroid, Moments of mass					
		and center of mass Moments of inertia. Examine vector fields					
		and dene and evaluate line integrals using the Fundamental					
		I neorem of Line Integrals and Green's Theorem; compute arc					
		and dene and evaluate line integrals using the Fundamental Theorem of Line Integrals and Green's Theorem; compute arc length.					

T.Y.B.Sc. Sem. VI, Paper 1					
Basic	Complex Analysis				
7.	All units	Students Analyze sequences and series of analytic functions and types of convergence, Students will also be able to evaluate complex contour integrals directly and by the fundamental theorem, apply the Cauchy integral theorem in its various versions, and the Cauchy integral formula, they will also be able to represent functions as Taylor, power and Laurent series, classify singularities and poles, find residues and evaluate complex integrals using the residue theorem.			
T.Y.I	B.Sc. Sem. V, Sem. VI Pap	er 2			
Grou	p Theory, Ring Theory (S	em V, Sem VI)			
8.	All units	Students will have a working knowledge of important mathematical concepts in abstract algebra such as definition of a group, order of a finite group and order of an element, rings, Euclidean domain, Principal ideal domain and Unique factorization domain. Students will also understand the connection and transition between previously studied mathematics and more advanced mathematics. The students will actively participate in the transition of important concepts such homomorphisms & isomorphisms from discrete mathematics to advanced abstract mathematics.			
T.Y.I	B.Sc. Sem. V, Sem. VI Pap	er 3			
Topo (Sem	ology of metric spaces (Sen VI)	n V), Topology of metric spaces and real analysis			
9.	All units	This course introduces students to the idea of metric spaces. It extends the ideas of open sets, closed sets and continuity to the more general setting of metric spaces along with concepts such as compactness and connectedness. Convergence concepts of sequences and series of functions, power series are also dealt with. Formal proofs are given a lot of emphasis in this course. This course serves as a foundation to advanced courses in analysis. Apart from understanding the concepts introduced, the treatment of this course will enable the learner to explain their reasoning about analysis with clarity and rigour.			
T.Y.I	B.Sc. Sem. V, Sem. VI Pap	per 4 (Elective-C)			
Grap	h Theory				
10.	All units	 Upon successful completion of Graph Theory course, a student will be able to: 1. Demonstrate the knowledge of fundamental concepts in graph theory, including properties and characterization of graphs and trees. 2. Describe knowledgeably special classes of graphs that arise frequently in graph theory 3. Describe the concept of isomorphic graphs and isomorphism invariant properties of graphs 			

en the properties
e structure of the
rithms including
ing.
and Hamiltonian
eory.
heory course, a
of graph theory,
atic number and
onnectivity, edge
rem on 2-vertex
Euler's formula,
duals in Planar
to network flows
stem of distinct
solve counting
0
on and apply the
11.5
apply them to
apply them to

SHORT TERM COURSES OF THE DEPARTMENT (2022-2023)

1. A Short Term Course on Solar Photovoltaic System

2. Certificate course on Applied Mathematics & Statistical techniques

EXTENSION ACTIVITIES (2022-2023)

 Guest lecture on "Career Scope in Mathematics" at K.B.P. Aashramshala Mokhada, Tal. Mokhada, Dist. Palghar

BEST PRACTICE (2022-2023)

• Student's presentation on "Mathematician & their contribution in the field of Mathematics"

INNOVATIVE PROJECT

• Making and use of "Colour/Rangoli Pendulum"

FUTURE PLAN

• To start Master degree program